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Linear dispersion relations for one-dimensional, electromagnetic particle simulation 
codes are analyzed in order to determine numerical stability properties. It is found that 
fast particles may resonate with light waves of matching phase velocity to produce a 
severe numerical instability. A Courant condition for this instability is derived, and 
comparison of its restrictiveness made among the various differencing schemes. At least 
two algorithms permitting reasonably large time steps for relativistic simulations are 
available. 

1. INTRODUCTION 

Over the past several years the utility of particle-in-ceil computer simulation 
codes [l] in investigating highly complex plasma physics phenomena has been well 
established. Nonetheless, it must be remembered that, due to the approximations 
which must be made in a plasma simulation, the results obtained cannot be expected 
to reproduce actual plasma behavior in all detail. To quantify difTerences, various 
authors have developed a theory of “computer plasmas” [2, 3,4] paralleling the 
basic features of ordinary plasma theory, and have performed detailed “computer 
experiments” [5,6] to verify this theory. Such studies have done much to facilitate 
the efficient utilization of particle codes and the proper interpretation of their 
results. 

With but few exceptions [7, 81, this theoretical analysis of particle codes has been 
restricted to electrostatic problems, In an attempt to alleviate this deficiency? we 
present the analysis of a simple yet significant numerical effect afflicting most 
relativistic electromagnetic particle codes. Specifically, we have found in a series of 
simulations that a cold, one-species plasma streaming rapidly in a spatially periodic, 
standard, one-dimension, electromagnetic particle code [9] gives rise to a rapidly 
growing numerical instability. Other simulations indicated that this same instability 
can arise in a variety of problems involving relativistic plasmas, including very hot 
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stationary Maxwellians. In all cases it is produced by an Lmphysicai resonance 
between fast particles and electromagnetic waves of matchmg phase vehxity. For 
this reason we refer to the effect as a numerical Cherenkov mutability, 

To better understand this behavior? we here derive and analyze in detail a iinear 
dispersion relation, includmg all reievant numerkai effects for the sn-npfest case 
pOSSibit2. that of the cold beam just mentioned. This dispersion relation is 

suffkiently general to include most electromagnetic dEerencing schemes ordinariij, 
used~ Two less conventional schemes, advanckg t!,le fields i.n spatial FozKer- 
transform space and advancmg the fields by advecxive difTerencmgY are aLso 
studied. In all instances we find that, in addition to the usual high frequenc:r hght 
waves: the dispersion relation contains a ba1M.k (or beamkrg) mode, spurixxs in 
the sense that it does not exist in the !imit of vanishing time step and cell size, it is 
the intersection of this mode with the light c-r 71 ves whk!2 occasions the numerica! 
Cherenlsov instabiiity. On this basis it I> .Q straightforwarcf to derive a Courant 
condition on particle motion. It states that: to avoid instabi3yY particles can be 
moved no more than some fraction of a grid ceil per time step! the Drecise distance 
depending 5n the diEerencing scheme used. 

Study of the dkpersion relation also provides the opportunity to gain :kdded 
insight into the more usual Courant condition on the field equations. This is park- 
ularl~~ fortunate in th.at the combination of par&A - and 5eld. Courant conditicr.5 
can severely restrict the allowable time step for relativistic simulations, problems 
which i3 any- event are quite expensive in computer time. A large portion of th& 
paper is devoted to illustrating the ways m whic!~ reasonable time steps can be 
obtained. v Qur overall conclusion is that the numerical Cnerenkov in~tabiky~ 
whik certaimy a nuisance3 can he avoided withou: excessive cost in computer $me 
and appa.rentiy without undue violence to the physics to be simulated. -. 

We begm by deriving the linear dispersion relation, incmdmg numerkd ef%xts~ 
for a q&e versatile but specific one space, three vekxixy electromagnetic partick 
code. Particle positions, charge density and electrostatic scalar potential, znd 
electric and magnetic fields are known at mtegral time steps; particIe veiocitie~~~ 
current density and transverse vector potential at half-ktegral times Eekds al-e 
defmed at cell edges, whiie potentials and charge azd current densities are de&x$ 
a~. cell centers (see Fig. 1). Standard area weighting is employed. both for deter- 
mining c!large and current densities from partick positions and velocities and for 
determining the forces on particies from the fields defined on the (periods) gri& 
All quantities are advanced using the leapfrog aigorithm, space and time cen~,ered~ 
and second-order accurate [I, 21. 
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FiG. 1. Spacetime grid for the differencing scheme of Section 2. 

Solution for the vector potential incorporates both multiple time steps [lo] and 
implicit dilferencing [Ill. For the former, the particles are advanced only every 
Mh time step (Ar an odd positive integer), so as to save computational time when 
treating nonrelativistic particles. Currents computed at the Mh time step are 
employed in advancing the vector potential also at the L q = (A.r - 1)/2 time steps 
to either side. Typically, Xis either one or three. 

Implicit differencing involves modifying the vector potential equation to read 

$(I,-/%&)A=-$A+J, 

where Ax is the cell size and ,8 is the implicitness parameter, - co < /3 < 0.25. 
(Units are chosen such that the plasma frequency and velocity of light each equal 
one.) As shown in Section 3, increasing /3 increases the phase velocity of light waves. 
For ,6 < --0.25 (A~/Ax)~, At the field time step, there is no Courant condition on 
the vector potential equation. Note that this technique can be applied with identical 
effect when the electromagnetic flelds themselves are integrated forward in time (as 
in Ref. [lo]): 

(d/&)(1 + /!I Ax2(d2/dxz)) E = Vx x B - J, (a’/&) B = -Vs x E. (2) 

This decomposition of Eq. (1) is not necessarily unique. 
Our derivation of the linearized, Fourier-transformed Vlasov equation proceeds 

just as in [2], except that we desire to know the first-order distribution function,J 



at half-integral rather than at integral times. As a consequence, tangent is re@aced 
by sine in the usual expression: 

This substitution represents one sigmficant diRerence between electrostatic and 
electromagnetic dispersion relations. In Eq. (3) F is the total force as felt by the 
particles, j” is the zero-order distribution function, and w and k are the frequency 
and wave number, respectively. IncidentaliyY even though Eq~ (3) strictly is vziid 
only non-reiativistically, our final result is equally valid (with the usual mass 
renormaiization) for a relativistic code, because we assume no thermal spread i@. 

For a single cold beam in a charge neutrahzing background., it is ekmentary to 
obtain from Eq. (3) the first-order current deusitv. 

This expression ignores spatial aliases [2] as comparaGvely unimportant for present 
purposes. To include them? replace k by k j- /kg thro~ugilo~ut the second he o! 
Eq. (4) and sum on &k7 = 277/6k, - cc < L < US). 

Special care must be taken in Fourier transformmg Eq. (.I). that proper accoun! 
is taken of the aliasing due to multiple time steps. The result is 

with ~0~ -= 2~/1V At. The N homogeneous equations implicit m (4) and (5) are easily 
solved to yield the desired dispersion relation 



508 BRENDAN B. GODFREY 

As previously mentioned, this expression is valid both relativistically and non- 
relativistically, and could have been obtained equally from Eq. (1) or Eq. (2). 

3. COURANT CONDITIONS 

A cursory examination of Eq. (6) indicates that it possesses not one but two sets 
of roots, corresponding to the high frequency light modes and, additionally, to a 
spurious beaming mode. Approximately, 

2 6~ z & z arcsin L At sin(k Ax/Z) 
&c [I - 4/3 si$(k Ax/~)]~!~ I ‘- ‘% (7) 

For reasonable accuracy, Eq. (7) requires Af c 1 c k. If A1 is much greater than 
1.5, the light modes are unstable near k = 0. A similar restriction on At, involving 
Langmuir waves, occurs in electrostatic simulations [12]. 

Figure 2 gives the exact solution to Eq. (6), determined numerically, for N = 3, 
,B = 0, v = 0.2, Ax = 0.1, and IVAt = 0.2, in the range 0 c u < Us. The complete 
solution would consist of 3(N - 1) additional branches, corresponding to other 1 
values in (7) and (8). (The simulation particles, with time step NAt, see the various 

FIG. 2. Typical numerical solution of Eq. (6). Shown are two light wave and one beam 
branches. The two light modes are of different Z, so that their intersection is stable. 



time abases as one.) Figure 3 is the power spectrum For .k = 0.98, taken from a 
simulation performed with the parameters of Fig. 2. The three modes of Fig. 2 are 
promment near the center of the diagram. Other modes, at higher frequencies and 
much lower intensities, arise from spatiai abases. 

FL& 3. &‘ewer spectrum for k = 0.98 from an elecQ-omagnck pirkie cod< sirn:~ihx~; 
IV = 3> ,8 = 0, v = 0.2, LIX = 0.1, and N& = 0.2. biotc the dominam beatnting an6 ligh: mo&s 
x a = -0.2 and &1.4, respectively. 

When branches of (7) and (8) intersect in the JL - tin &me, one shomd expect 
instabilities. There are three distinguishable cases: crossing of hght modes with the 
same 1 value, crossing of light modes with different 1 values, and crossing of a Sght 
mode and a beam mode. To avoid the first possibihtyY require the argument of the 
arcsine m (7) not to exceed unity. §ince the argument is largest for k = tin;z:< = 
z-/Ax, we obtain 

i.e., the standard Courant condition, modified by implicit diRereucin,g It- this. 
relation is violated, a well known virulent mstabihty arises. The interseczion of 
light branches of different Ps (illustrated in Fig. 2) is? on the other hand? ux~aky 

stable. Moreover, in the few exceptional cases, the instability grows slowly and is 
observed in computer simulations to saturate at an mnocuous &eL 

The final case, intersection of a spurious beam mode and a hght mode, typicaEy 
leads to the powerful numerical Cherenkov instabihty described in Section 1~ 
Figure 4 shows a case of such intersections The associated mstabihty growth r&es 
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are ,-OS. Computer simulations performed to verify these predictions exhibited 
violent instability at the indicated values of k. Resulting energy nonconservation 
was severe. 

FIG. 4. Numerical 
rates are of order 0.5. 

solution of Eq. (6), illustrating numerical Cherenkov Growth 

Conditions sufficient for stability can be obtained by allowing the modes nearly 
to come together at kInax . There are two inequahties of interest: for interaction of 
the beam mode with the nearest positive and negative [as defined by the sign in 
Eq. (7)] light modes, respectively. 

u<2AX L X arcsin L -g (1 - 4&1!2] . 

It cannot be emphasized too strongly that these relations are only approximate, 
and that, in particular, the second inequality is too weak when N > 1 and u g I. 
Subject to this caveat, a second Courant condition can be obtained. 

Equations (10) and (I 1) are most easily simultaneously satisfied when they are 
equivalent; i.e., when 

arcsin [(At/Ax)(l - 4/7-7 = 77/2N. w 

In this case, one has simply 

NAt < Ax/v. (131 
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Thus2 m distinction to electrostatic codes, in electromagnetic codes one cannot 
push particles faster than one cell per particle time step. The critical w&e C$ CE 
implicitness parameter defined by Eq. (12) is 

This is an exacting definition of ,kIC , particularly for Iv’ = 1, m that deviarions 
from it of only a few percent may reduce the ailowabk particle tune step 
dramaticaliy. Note that j3C always satisfies Eq. (9). 

The results, Eqs. (lo)-(14) are? as derived? merely sufficient conditions for 
stabihty. To determine necessary conditions we have expanded Eq~ (6) about the 
frequency at mtersection in order to find the sign of the couplmg terms ‘between 
thetwo modes.This computation, too lengthy to be reproduced here> inchcates that, 
for parameters of practical interest? intersection always imphes instabihty. Thus> 
Eqs. (IO)-(14) are also necessary. 

In a nonrelativistic problem, therefore? one could choose HAr = .LIX~S a& 
/3 = FC to obtain maximal computationa! speed. Ytn practice one would back ot? 
slightly from each of these values, as they represent margmal stabihty. bC%her 
considerations, such as proper treatment of electrostatic phenomena? of course, 
bear upon the values chosen. The choice of 1V depends upon the user-s hastes 

FIG. 5. Numerical solution of Eq. (6)? showing elect of cptimai choice of paratxeters fx 
N = 1 and a nonrelativistic beam. 

Figure 5 and 6 indicate typical contrasts. Recall that the light curves tangent at 
kmax m Fig. 6 are stable, since the modes are of diRerent I’s, 
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FIG. 6. Numerical solution of Eq. (6), showing effect of optimal choice of parameters for 
IV = 3 and a nonrelativistic beam. 

For relativistic velocities, the previous analytic approximations are less reliable, 
because the spurious beam mode and the negative light mode lie very near each 
other throughout their entire lengths. A numerical study of Eq. (6) was? therefore, 
performed using the ultra-relativistic limit ZJ = 1. Results are unpromising. On the 
one hand, for N > 1, an instability occurs near km=/4 even with Eq. (13) and (14) 
satisfied. Slight adjustment in p together with a substantial reduction in LIP 
ameliorates the problem somewhat, but does not remove it. On the other hand, 
for N = 1 and ,l3 precisely equal to /!IC , no instability occurs. Unfortunately, this is 
a condition of marginal stability according to Eq. (9). Thus, things otherwise 
minor in effect often can drive the system unstable. Indeed, when simulations were 
performed under these conditions (N = 1, u = 1, ,B = ,BC , Af = 0.9&), spatial 
aliasing led to a fast-growing instability. For N = 1 and /3 < /!& , instability arises 
near kmax/4, just as for N > 1. 

4. MODIFIED DISPERSION RELATIONS 

Solutions to this apparent dilemma fall into two classes, arranging that the 
modes don’t cross and arranging that crossing modes interact stably. A particularly 
simple approach of the first sort [13] is to increase the speed of light in the field 
equations (i.e,, multiply AI in Eq. (1) by some factor just greater than one) by 
enough that the negative light curve and the beaming curve no longer are tangent 
near kmaJ4. Since the fractional change required in the speed of light is small, 
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other stabihty conditions, Eqs. (9)-(14), would be relatively unchanged. ‘Thus, at no 
additiona! computational effort, the numerical Cherenkov mstabihtyy problem is 
solved even for highly relativistic beams. We h.ave, however, not p-ursued r&s 
approach in detail, because a second appears less drastic yet equahy effective. 

Two groups [g, 111 have independently reported that definmg the electric and 
magnetic fields on the same spatial mesh as the current density signinkantiy reduces 
mstability problems as compared with the staggered mesh scheme of Section 3. 
With this change Eq. (6) becomes 

Equations (7)-(14), derived from Eq. (6), clearly are unchanged. However-3 an 
analysis of the coupling between intersecting modes shows that the interaction of 
the negative light curve with the beaming curve is stab1.e provided 

At < 2Ax/u. <s 

Intersection of the positive light mode with the beaming mode remains uncon- 
ditionally unstable. 

FIG. 

iv == 1 

kc !cJp 

7. Numerical solution of Eq. (lj), showing effect of optima! choice 
and a. relativistic beam. 

Of parameters 
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Stability against the numerical Cherenkov instability, therefore, now requires (10) 
and (16) rather than (10) and (11). For very large /$ Eq. (10) reduces to 

NAt < 2Ax/v, (17) 

which dominates Eq. (16). However? such a choice for /3 severely distorts the light 
wave dispersion. A physically more realistic choice is ,L3 just less than pG , in which 
case Eq. (13) is recovered. Figure 7 provides a numerical solution to Eq. (15) for 
N = 1, ,!3 = 0.98/$, v = 1.0, Ax = 0.1, and At = 0.09. Note that instability near 
kmax/4 is no longer a problem. 

5. FIELD CALCULATION BY FOURIER TRANSFORM 

Next? we consider an unconventional method of determining the electromagnetic 
fields, namely by time integration of Maxwell’s equations in Fourier transform 
space. With such an approach one hopes to adjust individually the dispersion of each 
mode in wavenumber space in such a way as to minimize the effects of finite 
differencing. In particular, one wishes to have for light waves u = &k rather than 
for instance, Eq. (7). As we shall see, even though the goal of dispersionless light 
curves is achieved only to first order, this held solving technique seems remarkably 
free of numerical limitations. 

For definiteness let us analyze the algorithm of Haber et ul. [14]. Others are 
similar [15]. For this differencing scheme field and particle quantities are defined 
on the space-time mesh as in Section 4; i.e., as in Fig. 1 (with, of course, N = 1) 
but with the fields defined on the same spatial mesh as the currents. Also as before, 
currents are determined by standard area weighting, as are the forces on the 
particles. However, transverse fields are advanced not as in Eq. (1) or (2j but by 

E(t + At) = E(t) cos(k At) + z% x B(t) sin@ At) 

- $fJ (t + i At) sin(k At), 

B(t + At) = B(t) cos(k 4t) - iii x E(t) sin@ At) 

+ yf& x J (t +; At)[l - cos(k At)]. 

where E, B, and J are to be understood as the kth element of the spatially Fourier 
transformed fields and current density. & is a unit vector along k, which for our 
one-dimensional analysis points along the x axis. Finally, f is a form factor intro- 
duced to smooth the fields or to modify further their dispersion, Often, 
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f = exp[-k%$] with a 2 Ax in order to suppress high frequency coKsiona1 
effecis. 

Derivation from Eq. (18) of the cold beam dispersion relaiion proceeds as irk 
§ection 2. but more easily, since no multiple time steps are involved~ The res~~k is 
similar to Eq. (S), with the principle difference that L&K is replaced by Al- in Lmost 
pjaces. 

once again, spatial aliases have been ignored. To lowest or&z the normal mo&s 
are 

CJJ sz &k> ;zaj , 

OJR!. -kC. iZ[) 

Note, however, that Eq. (20) requires Al c 1 c k. Just as for Eq. (6) and Eq. (l5)? 
if .4l is greater than about 1.5, the light curves are unstable near k = G, ‘T!+ 
consiraint can be wea!sened somewhat by inserting the factor ~s~n(,~f~2)~~~~~;2)]~ 
intodK Even better choices offfor very large Ar are? of courses available. 

If the plasma is absent, so that the right side of Eq. (19) vanishes, then Eq. (XI> 
becomes exact, and there is no Conrant condition on the light waves, 
addition of plasma reastance just suflicientiy .distorts the light curves K cause 
instabiiity where the modes intersect. 

For ease of analysis, assume that u = 0. Then Eq. (19) reduces to 

Expand this expression about kt = r/At, the point ofintersectioE of&e light modes 
(actuaily of their time aliases)~ 

where g is shorthand for twice the coefficient uf sin (k Ar) in Eq. (22). The rigid: 
side of Eq. (23) attains a maximum of 1 + gz/4 at r -- k L! t = g, giving a maximum 
instability growth rate g/At. The width of the instability region in k is 
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One means of avoiding the instability is setting kmaX < kL(l - 2g/n), i.e., 
satisfying the Courant condition 

At < LlX(l - 2g/7r). (251 

Since g typically is small near kt , one usually has simply df < Ax. The second 
alternative is to arrange that the mode spacing in k, i.e., 24L, where L is the length 
of the grid, exceeds the instability width defined in (24). This is best accomplished 
by choosing dt not too large, say ~0.2. It is, of course, equally possible to let dt 
be large but makefsmall near kt . However, one must be cautions, lest the physics 
of the problem be distorted. 

When v is chosen not equal to zero, stability is more conveniently studied by 
numerical solution of Eq. (19). It is found that, although large v aggrevates some- 
what the instability, the conclusions of the preceding two paragraphs remain 
approximately valid. Figure 8, withf= 1, v = 0.6, LI.X = 0.5, and Llf = 1.0, is a 
particularly severe example. Growth rates for the intersection of the light modes 
are of order 0.2. 

Also shown in Fig. 8 is the numerical Cherenkov instability due to intersection 
of the positive light curve with the beam curve. Growth rates are of order 0.4. For 
the present algorithm, this instability is particularly simple to investigate. The 
negative light mode and its aliases do not intersect the beam mode for parameters 
of practical interest. The positive light mode does not intersect the beam mode, 
provided 

At < 2LlX/(l + v). @jl 

FIG. S. Numerical solution of Eq. (19), ilIustrating effect of severe violation of 
particle Courant conditions. Growth rates are of order 0.2 and 0.4, respectively. 

‘both light and 



An analysis of growth rates indicates that violation of (26) resuik always k. 
instability. Figure 9, intentionally chosen as close as possible in parameters 
(f = 1~ ~1 = 13, Ax = 0.1, Al = OB9) to Fig. 7, illustrates stability even i~ ke 
presence of an uhrarelativistic beam. Note That the beam mode and the ne@he 
light mode nearly coincide throughout their entire lengths. 

FIG. 9. Numerical solution of Eq. (19), illustrating optimal choice of parameters 5x ,f = ? 
and a relativistic beam. Compare Fig. 7. 

6. ADVECTIVE DIFFERENCING ‘SCHEME 

We conclude with an analysis of Langdon’s advective dBerencing scheme [16!. 
Cast MaxwelVs equations for Eu and Bz (similarly for Ez and BY) into the fom 

With the relevant quantities positioned on the space-time grid as in Fig, I5 the 
equations are differenced diagonally across the grid; i.e.? 

Note that this requires Ax = At. If desired? one could define a separate> 5ner 
spatial mesh for treating the electrostatic field* 
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Now, the surprising thing about this scheme is that it is rigorously equivalent to 
a special case of the standard procedures described in Section 2, namely with 
iV = 1, b = 0, and LLK = Llf. (This can be proven by straightforward manipula- 
tions of the corresponding finite difference equations.) Therefore, the improved 
stability attributed to codes using this scheme [16, 171 has, in fact, no connection 
with the field solving method. Rather, it is due to an unusual algorithm employed 
in determining the current. 

Most codes compute currents at the half-integral time steps from particle 
velocities at that time and from positions obtained by averaging the positions of 
each particle from the preceding and following integral time steps. In the present 
instance, two separate currents are computed, one from the velocities at the half- 
integral time and the positions at the preceding integral time step and the other 
from the same velocities but with the positions at the following integral time step, 
and then averaged to obtain a current at the half-integral time. The effect of this 
alternate procedure is to modify the distribution function of Eq. (3) by the factor 
cos@ dt/2). The resulting dispersion relation follows immediately from Eq. (6). 

t 
sin(m Ll1/2) z 

1 t 
sin(k Ll f/2) z 

1-f 
sin(k Lit/2) 4 ~-~ - 

A t/2 At/2 - k At/2 1 

. ~os(k~ At,2) sin(w At/2) cos(k At/2) + v COS(W At/2) sin(k At/2) 
sin[(u + kc) At/21 . (29) 

For ZJ near unity the right side of Eq. (29) is strongly suppressed at large k. Thus, 
we should expect the problems associated with marginal stability described in 
Sec. III to be markedly reduced. Indeed, numerical solutions of (29) and actual 
computer simulations [17] both demonstrate stability for practical values of At 
when 0 * I. For D small the analysis of Section 5 with Ax = At applies. Again, for 
reasonable simulation parameters numerical instabilities are absent. 

Of course, this same procedure for determining the current could be included in 
any of the differencing schemes discussed, in all cases with some improvement in 
stability. However, one might legitimately ask how desirable is a strong k-space 
smoothing which depends on particle velocity. The v dependence can be removed 
simply by instead computing current in the standard fashion but at spatial cell 
edges, then averaging to the cell center. The smoothing now becomes cos(k AX/~). 
However, the question of whether even this smoothing distorts too severely the 
physics remains unanswered. Clearly, for some problems such smoothing is 
acceptable, for others not. More practical experience is required for a reasonable 
evalution of current smoothing to avoid instabilities by either of the two 
techniques described in this section. 
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7. CONCLUSIONS 

We have seen that finite differencing of the particle and transverse ficld equations 
5f motion in electromagnetic particle plasma simulation codes gives rise to a 
spurious beaming mode. Additionally, the finite differencmg distorts the dispersion 
ef naturally occurring electromagnetic waves. It is well kt15w-1 that a Couran: 
condition on the time step must be satisfied in order to avoid a numerica: instab3ity 
due to crossing of light modes. Here we have found that the intersection of a Sght 
curve with a spurious beaming curve may alse lead to an instability, the numerica! 
Cherenkov mstability, and that to avoid this effect an additional Courant condition 
mttst be imposed. Basically, it states that simulation particles may not travel 
further than some fraction of a grid cell per time step 

Within the context of the present analysis which ignores both thermal and 
aliasmg effects7 there are basically two practical di?Lerencing schem.es for avoiding 
these instabilities. One can advance the transverse fi.eids in Fourier-transform 
space, thereby minimizing distortion to light modes. .4hernatively? one can add 
terms to the fume-differenced Maxwell’s equations which guarantee that the phase 
v&&y of light waves exceeds unity. In either case, .the nonphysical resonance -of 
f23t particles with tight waves leading to the numerical Cherenkov instabi+ty is 
ehmmated. The two methods seem about equalk: effectiveq so the choice between 
tirem must be based 511 other considerations. Fmahy, smoothmg of the currents in 
space or time mcreases stability. Extensive experience with this approach is lacking. 

Two extensions to the present study suggest themseIves. Firq mq+o~ed 
diEerencmg schemes should be sought. §econd an analysis of existing schemes for 
the eRects of spatial aiiases and of fmite temperatures is desirable. 

The most ambitious goal in improving differencmg schemes is to elimina~te the 
beaming mode entirely. While difficult? such an advance is perhaps not impossible. 
Also v&2able is the optimization of aigorithms. For in3Iance, one might consi& 
replacmg &/&%V by S/L&* in Eq. (1) to avoid having to invert a tridiagonat 
system at each time step [18]. The codes descri!ned in this article are a? o,T 2. 
3nomentum conserving” sort. Modifications to obtain “e~~epy ca2seG-pg 
algorithms [3] should not prove difficult. 

In electrostatic simulations, choice of a ceil size sigmficantly targer t!~a.:: the 
plasma Debye length leads to an instability associated with weakly dam,ped alias 
modes. [d9 57. §imilarly> one should expect aliases mstabihties in eh~trornagnetic 
simulations when cell size exceeds the plasma magnetic skin depth, c/s3 Ad&.- 
tionahy. the intersection of alias modes can produce instabilities of the sort 
described in this article, though generally with smaller growth rams and saturation 
ievels. Some evidence for Cherenkov instabilities mduced by ahases is mentioned 
in Section 3. Generally, thermal velocity spreads have an ameliorating infiuence 
on mstabilities, both physical and numericai. Whether this hoh&s true of 1%~ 
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Cherenkov instability is, however, unclear, since a high energy tail can make the 
Courant condition more difficult to satisfy. (Even a stationary Maxwellian distribu- 
tion can be unstable in this way.) It is evident that much useful work can be done 
along these lines. 
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